66.25
78.08
24 сентября 2018

Физики из Испании создали самую легкую жидкость во Вселенной

Технологии 14.12.2017
Физики из Испании создали самую легкую жидкость во Вселенной
Ученые из Каталонии "вырастили" капли квантовой жидкости, которые обладают необычными свойствами и имеют рекордно низкую плотность, говорится в статье, опубликованной в журнале Science.
"Наши калиевые капли во многом похожи на обычные капли воды — они обладают вполне определенными размерами, формой и массой, вне зависимости от того, куда бы мы их не поместили. С другой стороны, они существуют только при сверхнизких температурах и имеют квантовую природу", — рассказывает Цезарь Кабрера (Cesar Cabrera) из Института науки и технологий Барселоны (Испания).
Как отмечает физик, эта квантовая жидкость обладает рекордно высокой разреженностью — она содержит в себе минимальное число атомов, необходимое для того, чтобы ее капли не теряли свою форму и не превращались в газ. Иными словами, все ее частицы связаны друг с другом и характер их движения по пространству зависит от того, где и как расположены их "соседи".
Кабрера и его коллеги создали эту необычную субстанцию, пытаясь ответить на простой вопрос — как ведут себя газы и жидкости при сверхнизких температурах, и где находится та точка, когда плотный газ превращается в жидкость, а разреженная жидкость — в газ.
Для ответа на этот вопрос физики создали третью субстанцию — так называемый конденсат Бозе-Эйнштейна, охладив облако атомов калия-39 до температуры, близкой к абсолютному нулю. Он представляет собой необычную по своим свойствам форму материи, похожую одновременно и на газ, и на жидкость, которая ведет себя как один гигантский атом и обладает типичными "атомными" свойствами.
В "нормальном" состоянии конденсат Бозе-Эйштейна, как рассказывает Кабрера, ведет себя в большей степени как газообразная субстанция — он расширяется и стремится заполнить собой весь сосуд, где он находится. Как показали опыты испанских исследователей, столкновение двух подобных облаков газа приводит к крайне интересному последствию — на их месте возникает группа из нескольких мельчайших капель квантовой жидкости.
Атомы в ее каплях распределены так, что их отделяет максимальное расстояние, но при этом квантовые связи между никуда не пропадают. Благодаря этим связям капли квантовой жидкости из смеси конденсатов Бозе-Эйнштейна сохраняют форму и не превращаются в газ.
"Эти капли являются удивительными объектами макромира — несмотря на то, что они состоят из тысяч атомов, их поведение полностью задается квантовыми флуктуациями и корреляциями", — добавляет Летиция Тарруэлл (Leticia Tarruell), коллега Кабреры.
Эта жидкость обладает максимально низкой плотностью — она примерно в сто миллионов раз более разреженная, чем обычная вода, и примерно в миллион раз уступает по этому показателю обычному воздуху, а также обладает еще одним необычным свойством. Ее атомы постоянно движутся даже при околонулевых температурах, подчиняясь принципу неопределенности Гейзенберга и другим законам квантовой механики.
Как рассказывают ученые, столь высокая степень разреженности квантовой жидкости была сюрпризом для них — теоретические расчеты показывали, что она должна была быть примерно в два раза более плотной, а размеры капель должны были быть почти в три раза меньше. Учитывая огромное число атомов в этих каплях, просчитать их поведение на квантовом уровне пока нельзя, что не позволяет дать однозначное объяснение этому необычному расхождению между теорией и экспериментом.
По этой причине их свойства и секреты, по словам физиков, можно будет раскрыть, наблюдая за формированием и взаимодействием этих капель в реальном мире. Эти опыты могут помочь физикам не только найти объяснение их странным размерам и плотности, но и раскрыть принципы, которые управляют взаимодействиями десятков и сотен квантовых объектов друг с другом, к примеру, в жидком гелии или в недрах нейтронных звезд.